

Bipolar Plate-Supported Solid Oxide Fuel Cell "TuffCell"

J. David Carter, Deborah Myers, and Romesh Kumar Chemical Engineering Division

This presentation does not contain any proprietary or confidential information

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Project Objectives

- To develop an improved solid oxide fuel cell (SOFC) for Auxiliary Power Units and other portable applications
- Addressing the following SOFC issues:
 - Startup time
 - Durability to temperature cycling
 - Vibration and shock resistance
 - Materials and manufacturing cost

Budget

Total Project Funding,

FY'02-FY'04:

\$550 K

• FY'04 Funding:

\$250 K

Technical Barriers and Targets

- This project addresses DOE's Technical Barriers for Fuel Cell Components
 - O: Stack Material and Manufacturing Cost
 - P: Durability
 - Q: Electrode Performance
 - R. Thermal and Water Management

- DOE's Technical Target is to develop a 3-5 kW_e Auxiliary Power Unit with the following attributes:
 - Power Density: 150 W/kg and 170 W/L
 - Start-up time, cyclability, durability: 15-30 min, 500 cycles, 5,000 hours

U.S. Department of Energy, EERE Hydrogen, Fuel Cells, and Infrastructure Technologies Program

- Cost: \$400/kW_e

Approaches

- Support cell on metallic bipolar plate to improve durability, cyclability, and shockresistance
- Minimize thickness of expensive ceramiccontaining layers (anode, electrolyte, and cathode)
- Fabricate cell components using powder metallurgy techniques
- Eliminate manufacturing steps to reduce cost
- Develop and test improved SOFC stacks

Anode-supported SOFC

Metallic Bipolar Plate Supported SOFC

TuffCell design and fabrication procedure address SOFC shortcomings

Tape cast cell layers (w/o cathode)

Slurry-coat cathode to laminate and sinter in situ

- Thin layers of expensive ceramic materials
- Brittle ceramic components are bonded to tough metallic layers
- Single programmed high temperature process
- Single electrical contact plane between stack units

temperature procedure

Safety

Internal safety reviews have been performed for all aspects of this project to address ESH issues

- Component fabrication
 - All fabrication is performed in a hood to exhaust vapors of organic solvents and powders
 - Used organic solvents and powders are collected and disposed of through the laboratory's Waste Management Operations
- Cell sintering and cell/stack testing
 - Performed in a hood equipped with hydrogen monitors that trigger automatic shut down of process/test
- Safety reviews are updated and renewed annually

Project Timeline

Current status of TuffCell's power density

TuffCell's superior mechanical properties, cyclability demonstrated

Physical tests:

- Impact test
- 4-point bend test
- Temperature cycling from RT to 800° C at ~10° C/min

TuffCell stack development efforts

Feb. 2004 Milestone: Test two-cell stack on simulated reformate/air

- Stack test requires cell modifications/refinements
 - Individual cell size scale-up from 1"x1" to 2"x2"
 - Gas impermeable bipolar plate
 - Edge sealing for gas manifolding
 - Corner sealing for gas manifolding
 - Coating of chromium-containing cathode flow field
 - Flat flow fields for good electrical contact between cells

Dilatometer study showed problem with bipolar plate binder burn-out

12

New binder solved problem of component expansion mismatch during high-temperature processing

13

Cell fabrication for stack required development of edge sealing procedure

 Metal slip composition was altered to allow metal to be injected into the edges of the flow field tape

A novel and flexible stack test apparatus was designed and built

A two-cell stack (with edge sealing) was fabricated and tested at 800°C

Bipolar Plate
Cathode Flow Field

TuffCell repeat unit

Anode/Electrolyte/Cathode Anode Flow Field Bipolar Plate

Gold foil current collector

Results and lessons learned from stack test

- A realistic open circuit potential was not achieved
- Corner gaskets leaked
 - Composition of gaskets will be altered to reduce porosity
- Metal flow fields caused a large pressure drop through the stack at 1/16-in thickness
 - Increased thickness to 1/8-in while minimizing weight increase by improving metal coating procedure
- Poor contact between adjacent cells
 - Metal flow fields will be ground flat before assembly of stack

Progress vs. FY '04 Milestones

Test two-cell stack on simulated reformate/air (2/04)

- Scaled single cell fabrication from 1x1 in size to 2x2
- Designed and built stack test apparatus and developed internal manifolding procedure
- Fabricated first two-cell TuffCell stack and tested it on hydrogen/air

Complete start-up time and cycle tests (6/04)

 Once stack sealing issues have been resolved, we will test startup time and cycle tests

Obtain a single cell power density of >350 mW/cm_ (9/04)

 Improved single cell fabrication materials and procedure using dilatometer results. Current status: 260 mW/cm

Interactions and Collaborations

- Collaboration with Korea Advanced Institute of Science and Technology:
 Professor Joongmyeon Bae
- Samples will be provided to Motorola for evaluation (Non-disclosure agreement recently signed)
- Patent Application: US2003/0232230 A1

Reviewers' comments from Berkeley meeting

- Important to demonstrate a two-cell stack
 - Work-in-progress
- Estimate cost of TuffCell and where the opportunities are relative to the \$400/kW_e target
 - Anode-supported SOFC Stack Materials: \$139/kW_e
 - TuffCell Stack Materials: \$85/kW_e
- May trade some performance for reliability
 - TuffCell should have improved performance due to elimination of resistive bond layers/interfaces

Future Plans - FY'04 and Beyond

- Continue to improve single cell and stack power densities to decrease size, weight, and cost
 - Improve design and fabrication procedure
 - Investigate improved materials for metallic support, anode, and cathode
- Demonstrate that TuffCell stacks can meet DOE Performance Technical Targets for APU application
 - Test start-up time (goal: < 30 min.)
 - Temperature cycling tests (goal: > 500 cycles)
 - Investigate durability (goal: > 5,000 operating hours)

Acknowledgments

- Funding from the U.S. Department of Energy, Energy
 Efficiency, Renewable Energy: Hydrogen, Fuel Cells &
 Infrastructure Technologies Program is gratefully
 acknowledged
- Nancy Garland, DOE Technology Development Manager

